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ADVANCED COUNTING TECHNIQUES 

• Many counting problems cannot be solved easily using the methods 

discussed in previous lecture about combinatorics. One such problem 

is: How many bit strings of length 𝑛 do not contain two consecutive 

zero? To solve this problem, let 𝑎𝑛 be the number of such strings of 

length 𝑛. An argument can be given that shows that the sequence *𝑎𝑛+ 

satisfies the recurrence relation 𝑎𝑛+1 = 𝑎𝑛 + 𝑎𝑛−1 and the initial 

conditions 𝑎1 = 2 and 𝑎2 = 3. 



ADVANCED COUNTING TECHNIQUES  

• This recurrence relation and the initial conditions determine the 

sequence *𝑎𝑛+. Moreover, 𝑎𝑛 explicit formula can be found for an from 

the equation relating the terms of the sequence. As we will see, a 

similar technique can be used to solve many different types of counting 

problems. 



ADVANCED COUNTING TECHNIQUES  

• We will discuss two ways that recurrence relations play important roles 

in the study of algorithms. First, we will introduce an important 

algorithmic paradigm known as dynamic programming. Algorithms that 

follow this paradigm break down a problem into overlapping sub 

problems. The solution to the problem is then found from the solutions 

to the sub problems through the use of a recurrence relation. Second, 

we will study another important algorithmic paradigm, divide-and-

conquer. 



ADVANCED COUNTING TECHNIQUES 

• Algorithms that follow this paradigm can be used to solve a problem by 

recursively breaking it into a fixed number of non overlapping sub 

problems until these problems can be solved directly. The complexity 

of such algorithms can be analyzed using a special type of recurrence 

relation. In this lecture we will discuss a variety of divide-and-conquer 

algorithms and analyze their complexity using recurrence relations. 



ADVANCED COUNTING TECHNIQUES 

• We will also see that many counting problems can be solved using 

formal power series, called generating functions, where the coefficients 

of powers of 𝑥 represent terms of the sequence we are interested in. 

Besides solving counting problems, we will also be able to use 

generating functions to solve recurrence relations and to prove 

combinatorial identities. 



ADVANCED COUNTING TECHNIQUES  

• Many other kinds of counting problems cannot be solved using the 

previous techniques, such as: How many ways are there to assign seven 

jobs to three employees so that each employee is assigned at least one 

job? How many primes are there less than 1000?  



ADVANCED COUNTING TECHNIQUES 

• Both of these problems can be solved by counting the number of 

elements in the union of sets. We will develop a technique, called the 

principle of inclusion-exclusion, that counts the number of elements in 

a union of sets, and we will show how this principle can be used to 

solve counting problems. 



APPLICATIONS OF RECURRENCE 
RELATIONS 

• A recursive definition of a sequence specifies one or more initial terms 

and a rule for determining subsequent terms from those that precede 

them. Also, a rule of the latter sort (whether or not it is part of a 

recursive definition) is called a recurrence relation and that a sequence 

is called a solution of a recurrence relation if its terms satisfy the 

recurrence relation. 

 



APPLICATIONS OF RECURRENCE 
RELATIONS  

• In this lecture we will show that such relations can be used to study and 

to solve counting problems. For example, suppose that the number of 

bacteria in a colony doubles every hour. If a colony begins with five 

bacteria, how many will be present in 𝑛 hours? To solve this problem, 

let 𝑎𝑛 be the number of bacteria at the end of 𝑛 hours. Because the 

number of bacteria doubles every hour, the relationship 𝑎𝑛 = 2𝑎𝑛−1 

holds whenever 𝑛 is a positive integer. 

 



APPLICATIONS OF RECURRENCE 
RELATIONS  

• This recurrence relation, together with the initial condition 𝑎0 = 5, 

uniquely determines 𝑎𝑛 for all nonnegative integers 𝑛. We can find a 

formula for 𝑎𝑛 using the iterative approach, namely that  

• 𝑎𝑛 = 5 ⋅ 2𝑛  

• for all nonnegative integers 𝑛. 



MODELING WITH RECURRENCE 
RELATIONS 

• We can use recurrence relations to model a wide variety of problems, 

such as finding compound interest, counting rabbits on an island, 

determining the number of moves in the Tower of Hanoi puzzle, and 

counting bit strings with certain properties. 

 

 



LINEAR RECURRENCE RELATIONS  

Definition 1. A linear homogeneous recurrence relation of degree 𝑘 with 

constant coefficients is a recurrence relation of the form 

  

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 

 

where 𝑐1, 𝑐2, … , 𝑐𝑘 are real numbers, and 𝑐𝑘 = 0. 



LINEAR RECURRENCE RELATIONS  

• The recurrence relation in the definition is linear because the right-hand 

side is a sum of previous terms of the sequence each multiplied by a 

function of 𝑛. The recurrence relation is homogeneous because no 

terms occur that are not multiples of the 𝑎𝑗’s. The coefficients of the 

terms of the sequence are all constants, rather than functions that 

depend on 𝑛. The degree is 𝑘 because an is expressed in terms of the 

previous 𝑘 terms of the sequence. 



LINEAR RECURRENCE RELATIONS  

• A consequence of the second principle of mathematical induction is that 

a sequence satisfying the recurrence relation in the definition is 

uniquely determined by this recurrence relation and the 𝑘  initial 

conditions 

 

𝑎0 = 𝐶0, 𝑎1 = 𝐶1, … , 𝑎𝑘−1 = 𝐶𝑘−1 



SOLVING LINEAR RECURRENCE 
RELATIONS: EXAMPLE 

• The recurrence relation 𝑃𝑛 = 11𝑃𝑛−1 is a linear homogeneous 

recurrence relation of degree one. The recurrence relation 𝑓𝑛 = 𝑓𝑛−1 +
 𝑓𝑛−2 is a linear homogeneous recurrence relation of degree two. The 

recurrence relation 𝑎𝑛 = 𝑎𝑛−5 is a linear homogeneous recurrence 

relation of degree five. 



SOLVING LINEAR RECURRENCE 
RELATIONS: EXAMPLE 

• The recurrence relation 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2
2  is not linear. The recurrence 

relation 𝐻𝑛 = 2𝐻𝑛−1 + 1 is not homogeneous. The recurrence relation 

𝐵𝑛 = 𝑛𝐵𝑛−1 does not have constant coefficients. 

 

• Linear homogeneous recurrence relations are studied for two reasons. 

First, they often occur in modeling of problems. Second, they can be 

systematically solved. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS 

• The basic approach for solving linear homogeneous recurrence 

relations is to look for solutions of the form 𝑎𝑛 = 𝑟𝑛, where 𝑟 is a 

constant. Note that 𝑎𝑛 = 𝑟𝑛 is a solution of the recurrence relation  

 

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 

if and only if 

 

𝑟𝑛 = 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 + ⋯ + 𝑐𝑘𝑟𝑛−𝑘. 

 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• When both sides of this equation are divided by 𝑟𝑛−𝑘 and the right-

hand side is subtracted from the left, we obtain the equation  

 

𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘−1𝑟 − 𝑐𝑘 = 0 

 

• Consequently, the sequence *𝑎𝑛+ with 𝑎𝑛 = 𝑟𝑛 𝑛 is a solution if and 

only if 𝑟 is a solution of this last equation. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• We call this the characteristic equation of the recurrence relation. The 

solutions of this equation are called the characteristic roots of the 

recurrence relation. As we will see, these characteristic roots can be 

used to give an explicit formula for all the solutions of the recurrence 

relation. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• We will first develop results that deal with linear homogeneous 

recurrence relations with constant coefficients of degree two. Then 

corresponding general results when the degree may be greater than two 

will be stated. Because the proofs needed to establish the results in the 

general case are more complicated, they will not be given here. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS 

We now turn our attention to linear homogeneous recurrence relations of 

degree two. First, consider the case when there are two distinct 

characteristic roots. 

 

The case when there are two equal characteristic roots is left as exercise. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• THEOREM 1. Let 𝑐1 and 𝑐2 be real numbers. Suppose that  

 
𝑟2 − 𝑐1𝑟 − 𝑐2 = 0 

has two distinct roots 𝑟1 and 𝑟2. Then the sequence *𝑎𝑛+ is a solution of 

the recurrence relation 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 if and only if  

 

𝑎𝑛 = 𝑎1𝑟1
𝑛 + 𝑎2𝑟2

2 

for 𝑛 =  0, 1, 2, . . .,  where 𝑎1 and 𝑎2 are constants. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

Proof: We must do two things to prove the theorem. First, it must be 

shown that if 𝑟1 and 𝑟2 are the roots of the characteristic equation, and 𝛼1 

and 𝛼2 are constants, then the sequence *𝑎𝑛+ with 𝑎𝑛 = 𝛼1𝑟1
𝑛 +  𝛼2𝑟2

𝑛  is 

a solution of the recurrence relation. Second, it must be shown that if the 

sequence *𝑎𝑛+ is a solution, then 𝑎𝑛 = 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛 for some constants 

𝛼1 and 𝛼2.  



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• Proof (cont.): Now we will show that if 𝑎𝑛 = 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛, then the 

sequence *𝑎𝑛+ is a solution of the recurrence relation. Because 𝑟1 and 

𝑟2 are roots of 𝑟2 − 𝑐1𝑟 − 𝑐2 = 0, it follows that  

 

 𝑟1
2 = 𝑐1𝑟1 + 𝑐2,     𝑟2

2 = 𝑐1𝑟2 + 𝑐2. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• Proof (cont.): From these equations, we see that 

 

𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 = 𝑐1 𝛼1𝑟1
𝑛−1 + 𝛼2𝑟2

𝑛−1 + 𝑐2 𝛼1𝑟1
𝑛−2 +  𝛼2𝑟2

𝑛−2

= 𝛼1𝑟1
𝑛−2 𝑐1𝑟1 + 𝑐2 + 𝛼2𝑟2

𝑛−2 𝑐1𝑟2 + 𝑐2

= 𝛼1𝑟𝑛−2𝑟1
2 + 𝛼2𝑟2

𝑛−2𝑟2
2 = 𝛼1𝑟1

𝑛 +  𝛼2𝑟2
𝑛 = 𝑎𝑛 

 

This shows that the sequence *𝑎𝑛+ with 𝑎𝑛 = 𝛼1𝑟1
𝑛 +  𝛼2𝑟2

𝑛 is a solution 

of the recurrence relation. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS 

• Proof (cont.): To show that every solution *𝑎𝑛+ of the recurrence 

relation 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2  has 𝑎𝑛 = 𝛼1𝑟1
𝑛 +  𝛼2𝑟2

𝑛  for 𝑛 =
 0, 1, 2, . . . , for some constants 𝛼1  and 𝛼2 , suppose that *𝑎𝑛+ is a 

solution of the recurrence relation, and the initial conditions 𝑎0 =
𝐶0 and 𝑎1 = 𝐶1 hold. It will be shown that there are constants 𝛼1 and 

𝛼2 such that the sequence *𝑎𝑛+ with 𝑎𝑛 = 𝛼1𝑟1
𝑛 +  𝛼2𝑟2

𝑛 satisfies these 

same initial conditions. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• Proof (cont.): The requires that 

 
𝑎0 = 𝐶0 = 𝛼1 + 𝛼2 

𝑎1 = 𝐶1 = 𝛼1𝑟1 + 𝛼2𝑟2 

 

• We can solve these two equations for 𝛼1 and 𝛼2. From the first equation it 

follows that 𝛼2 = 𝐶0 − 𝛼1. Inserting this expression into the second equation 

gives 

𝐶1 = 𝛼1𝑟1 + 𝐶0 − 𝛼1 𝑟2.   



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• Proof (cont.): Hence, 𝐶1 = 𝛼1 𝑟1 − 𝑟2 + 𝐶0𝑟2. 

This shows that 

𝛼1 = 𝐶1 − 𝐶0𝑟2𝑟1 − 𝑟2 and 

 𝛼2 = 𝐶0 − 𝛼1 = 𝐶0 − 𝐶1 − 𝐶0𝑟2𝑟1 − 𝑟2 = 𝐶0𝑟1 − 𝐶1𝑟1 − 𝑟2, 

Where these expressions for 𝛼1 and 𝛼2 depend on the first that 𝑟1 = 𝑟2. (When 

𝑟1 = 𝑟2, this theorem is not true.) Hence, whith these values for 𝛼1 and 𝛼2, the 

sequence *𝑎𝑛+ with 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛 satisfies the two initial conditions.  

 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• Proof (cont.): We know that *𝑎𝑛+and *𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛+ are both solutions of the 

recurrence relation 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2  and both satisfy the initial 

conditions when 𝑛 = 0 and 𝑛 = 1.Because there is a unique solution of a linear 

homogeneous recurrence relation of degree two with two initial conditions, it 

follows that the two solutions are the same, that is, 𝑎𝑛 = 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛 for all 

non negative integers 𝑛. 



SOLVING LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS WITH 

CONSTANT COEFFICIENTS  

• Proof (cont.): We have completed the proof by showing that a solution of the 

linear homogeneous recurrence relation with constant coefficients of degree 

two must be of the form 𝑎𝑛 = 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛 , where 𝛼1 and 𝛼2 are constants 



EXAMPLE 

• What is the solution of the recurrence relation 

𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2 

with 𝑎0 = 2 and 𝑎1 = 7? 

Solution: Theorem 1 can be used to solve this problem. The characteristic 

equation of the recurrence relation is 𝑟2 − 𝑟 − 2 = 0. Its roots are 𝑟 = 2 and 

𝑟 = −1. Hence, the sequence *𝑎𝑛+ is a solution to the recurrence relation if and 

only if 𝑎𝑛 = 𝛼12𝑛 + 𝛼2 −1 𝑛, for some constants 𝛼1 and 𝛼2. 



EXAMPLE  

• Solution: From the initial conditions, it follows that  

𝑎0 = 2 = 𝛼1 + 𝛼2, 

𝑎1 = 7 = 𝛼1 ⋅ 2 + 𝛼2 ⋅ (−1). 

Solving these two equations shows that 𝛼1 = 3 and 𝛼2 = −1. Hence, the solution 

to the recurrence relation and initial conditions is the sequence *𝑎𝑛+ with 

𝑎𝑛 = 3 ⋅ 2𝑛 − −1 𝑛. 



EXAMPLE  

• Find an explicit formula for the Fibonacci numbers. 

Solution: Recall that the sequence of Fibonacci numbers satisfies the recurrence 

relation 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 and also satisfies the initial conditions 𝑓0 = 0 and 

𝑓1 = 1. The roots of the characteristic equation 𝑟2 − 𝑟 − 1 = 0 are 

𝑟1 =
1+√5

2
 and 𝑟2 =

1−√5

2
. 



• Solution (cont.): Therefore, from Theorem 1 itfollows that the Fibonacci 

numbers are given by 

• 𝑓𝑛 = 𝛼1
1+√5

2

𝑛

+ 𝛼2
1−√5

2

𝑛

, 

 

• for some constants 𝛼1and 𝛼2. The initial conditions 𝑓0 = 0 and 𝑓1 = 1 can be 

used to find these constants. 



• Solution (cont.): We have 𝑓0 = 𝛼1 + 𝛼2 = 0, 

𝑓1 = 𝛼1

1 + 5

2

𝑛

+ 𝛼2

1 − 5

2

𝑛

= 1. 

• The solution to these simultaneous equations for 𝛼1  and 𝛼2 is 

 𝛼1 =
1

√5
, 𝛼2 = −

1

√5
.  

• Consequently, the Fibonacci numbers are given by 

𝑓𝑛 =
1

5

1+√5

2

𝑛

−
1

5

1−√5

2

𝑛

. 



HOMEWORK: EXERCISES 2, 4, 6 ON P. 
524; 


